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Abstract

Transreal integrals seek to extend the usual definitions of integrals from
real to transreal numbers. An earlier definiton of the transreal integral
was only partially successful. It obtained many real integrals but could
not obtain improper integrals of some real functions. The present integral
overcomes these limitations. It is defined on the entire set of transreal
numbers and integrates all functions which are properly or improperly
integrable, in the usual sense, on real numbers.

1 Introduction

Real numbers are used in everyday life to count and measure finite things.
In some areas of mathematics and science, the real numbers are extended
with a positive and a negative infinity that make sense of unboundedly
large magnitudes. The transreal numbers take this further: they contain
all of the real numbers, the infinities of the extended real numbers, and a
new non-finite number, namely nullity. Thus the transreal numbers extend
counting and measuring from the finite world of everyday experience to
a hypothetical and, perhaps, actual world that contains everyday finite
quantities and both infinite and nullity values at singularities.

Now that we have access to transreal numbers, it seems natural to ask
what operations on real numbers can be extended to transreal numbers.
In particular, what parts of real calculus – which is widely used in science
and engineering to describe the workings of the physical world and to
design machines and structures – can be extended to deal with infinite
and nullity singularities.
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In the papers [1] [3] [4] [5] we have been extending the real calculus to
a transreal calculus. We have defined topology, limits, continuity, deriva-
tive and integral on transreal numbers. We aimed to extend the usual
definitions on real numbers so that when any of transreal topology, limit,
continuity or derivative is applied to real numbers the result is the same
as when using the usual, real, definition. All real numbers are transreal
numbers, so the transreal derivative, for example, can be applied to real
numbers. When we take the transreal derivative of an arbitrary real func-
tion of a real variable, we get exactly the usual, real, derivative of that
function. The same occurs for topology, limits and continuity. Similarly
transreal topology and limits give the usual answers when applied to ex-
tended real numbers that admit infinities. However, the same does not
occur for all improperly integrable functions. According to the earlier def-
inition of the integral on transreal numbers, some improperly integrable
(in the usual sense) functions are not integrable in the transreal sense. For
example, the function x 7→ sin x

x
is improperly integrable in [0,∞] but is

not integrable in the earlier transreal sense. In [2] we proposed an integral
on extended real numbers. All properly or improperly integrable functions
are integrable in the sense proposed in [2]. Here we extend that integral
to the transreal numbers. In this way, the present paper introduces an
integral, defined on transreal numbers, that contains the real integral, as
promised in the first paragraph of the Section V of [5]. All properly or im-
properly integrable functions, in the usual real and extended real senses,
are integrable in the transreal sense, introduced here.

2 Preliminaries

The set of transreal numbers, denoted RT , is formed by the real numbers
and the three new elements minus infinity, infinity and nullity, which are
denoted, respectively, by −∞,∞ and Φ. Therefore RT = R∪{−∞,∞,Φ}.
Division by zero is allowed in the set of transreal numbers. Specifically
−1/0 = −∞, 1/0 = ∞ and 0/0 = Φ. The arithmetic and order relation
defined on RT are such that for each x, y ∈ RT it follows that:

i) If x ∈ R then −∞ < x <∞.

ii) The following does not hold x < Φ or Φ < x.

iii) −(∞) = −∞, −(−∞) =∞ and −Φ = Φ.

iv) ∞−1 = 0, (−∞)−1 = 0, Φ−1 = Φ and 0−1 =∞.

v) ∞+ x =

{
Φ, if x ∈ {−∞,Φ}
∞, otherwise

, −∞+ x = −(∞− x) and

Φ + x = Φ.

vi) ∞× x =


Φ, if x ∈ {0,Φ}

−∞, if x < 0
∞, if x > 0

, −∞× x = −(∞× x) and

Φ× x = Φ.

vii) x− y = x + (−y).

viii) x÷ y = x× y−1.
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The consistency of transreal arithmetic is proved in [6].
For all x, y ∈ RT , we write x 6< y if and only if x < y does not hold and

we write x 6> y if and only if x > y does not hold. Notice that 6< is not
equivalent to ≥. For example Φ 6< 0 but Φ ≥ 0 does not hold. However,
for all x, y ∈ RT \{Φ}, it follows that x 6< y if and only if x ≥ y and x 6> y
if and only if x ≤ y.

In Definition 14 in [3] and in Definition 21 in [5] we defined the supre-
mum and infimum on transreal numbers but there is a mistake there.
Those definitions must be replaced by Definition 1 below.

Definition 1. Let A ⊂ RT be an arbitrary non-empty set. We say that
u ∈ RT is the supremum of A and we write u = supA if and only if one
of the following conditions occurs:

i) A = {Φ} and u = Φ or
ii) x ≤ u for all x ∈ A \ {Φ} and for each y ∈ [−∞, u) there is x ∈ A

such that y < x.
And we say that v ∈ RT is the infimum of A and we write v = inf A if
and only if one of the following conditions occurs:

iii) A = {Φ} and v = Φ or
iv) v ≤ x for all x ∈ A \ {Φ} and for each y ∈ (v,∞] there is x ∈ A

such that x < y.

Notice that for all A ⊂ RT if A \ {Φ} 6= ∅ then supA = supA \ {Φ}
and inf A = inf A \ {Φ}.

Let a, b ∈ RT . We define

a) (a, b) := {x ∈ RT ; a < x < b}
b) (a, b] := (a, b) ∪ {b},
c) [a, b) := {a} ∪ (a, b) and

d) [a, b] := {a} ∪ (a, b) ∪ {b}.
Notice that for all a ∈ RT we have that [a,Φ] = {a,Φ} and [Φ, a] = {a,Φ}.
If we had defined [a, b] = {x ∈ RT ; a ≤ x ≤ b}, we would have [a,Φ] = ∅
for all a ∈ RT .

The transreal numbers are a topological space where the open subsets
are arbitrary unions of finitely many intersections of the following four
kinds of intervals:

i) (a, b) where a, b ∈ R,

ii) [−∞, b) where b ∈ R,

iii) (a,∞] where a ∈ R and

iv) {Φ}.
The topology of RT contains the topology of R, that is, when it is restricted
to subsets of R, it coincides with the topology of R.

The definition for the convergence of a sequence is the usual in a
topological space. That is a sequence, (xn)n∈N ⊂ RT , converges to x ∈ RT

if and only if for each neighbourhood, V ⊂ RT of x, there is nV ∈ N such
that xn ∈ V for all n ≥ nV . Notice that if (xn)n∈N ⊂ R and L ∈ R then
limn→∞ xn = L in RT if and only if limn→∞ xn = L in the usual sense in
R. Furthermore, (xn)n∈N diverges, in the usual sense, to negative infinity
if and only if limn→∞ xn = −∞ in RT . Similarly (xn)n∈N diverges, in the
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usual sense, to infinity if and only if limn→∞ xn = ∞ in RT . Notice also
that limn→∞ xn = Φ if and only if there is k ∈ N such that xn = Φ for all
n ≥ k.

Let (xn)n∈N ⊂ RT . For each n ∈ N, we define sn :=
∑n

i=1 xi. The
sequence (sn)n∈N is called a series and is denoted by

∑
xn. Each sn is

called a partial sum of
∑

xn and xn is called the n-th term of
∑

xn.
We say that

∑
xn converges or is convergent if and only if there is the

limn→∞ sn. Otherwise,
∑

xn diverges or is divergent. When
∑

xn is
convergent we denote

∑∞
n=1 xn := limn→∞ sn.

Let (xn)n∈Z ⊂ RT . For each n ∈ N we denote rn :=
∑n

i=1 x−i and
tn :=

∑n
i=1 xi−1. The pair (

∑
x−n ,

∑
xn−1) is called a bilateral se-

ries. We say that (
∑

x−n ,
∑

xn−1) converges if and only if
∑

x−n

and
∑

xn−1 are both convergent. In this way we denote
∑∞

n=−∞ xn :=∑∞
n=1 x−n +

∑∞
n=1 xn−1. We also denote

∑−1
n=−∞ xn :=

∑∞
n=1 x−n and∑∞

n=0 xn :=
∑∞

n=1 xn−1. Frequently we abuse notation and denote a
bilateral series (

∑
x−n ,

∑
xn−1) by

∑∞
n=−∞ xn.

3 The Transreal Integral

Definition 2. Let a, b ∈ RT where a 6> b and f : [a, b]→ RT .

a) A sequence (xn)n∈Z ⊂ RT is called an transpartition of [a, b] if and
only if it satisfies all of the three following conditions:

i) (xn)n∈Z ⊂ [a, b],

ii) xi 6> xj whenever i < j and

iii) limn→−∞ xn = a and limn→∞ xn = b.

For each (xn)n∈Z transpartition of [a, b] denote, for each i ∈ Z:

b) ∆xi := xi − xi−1,

c) mi := inf
{
f(x); x ∈ [xi−1, xi]

}
,

d) Mi := sup
{
f(x); x ∈ [xi−1, xi]

}
.

e) Denote the set of all transpartitions (xn)n∈Z of [a, b] such that∑∞
i=−∞mi∆xi and

∑∞
i=−∞Mi∆xi are both convergent in RT as

PRT

(
f ; [a, b]

)
.

For each P = (xn)n∈Z ∈ PRT

(
f ; [a, b]

)
, denote

f) L
(
f ;P

)
:=
∑∞

i=−∞mi∆xi and

g) U
(
f ;P

)
:=
∑∞

i=−∞Mi∆xi.

Definition 3. Let a, b ∈ RT where a 6> b and f : [a, b] → RT . The
function f is said to be integrable in [a, b] if and only if

sup
{
L(f ;P ); P ∈ PRT

(
f ; [a, b]

)}
= inf

{
U(f ;P ); P ∈ PRT

(
f ; [a, b]

)}
.

And in this case the integral of f in [a, b] is defined by∫ b

a

f := sup
{
L(f ;P ); P ∈ PRT

(
f ; [a, b]

)}
.
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Henceforth the integral defined above is called simply an integral and
is denoted by

∫ b

a
f. The Riemann integral is denoted by

∫ b

a
R

f.

The integrable functions, in the sense of Definition 3, make a super-
set of the Riemann, proper or improper, integrable functions. That is,
this paper’s definition integrates every function which Riemann integrates
properly or improperly.

Theorem 4. Let a, b ∈ RT \ {Φ} where a < b and f : [a, b] → RT \ {Φ}
such that f

(
(a, b)

)
⊂ R. If f is Riemann integrable, either as a proper

integral or as an improper integral, then f is integrable (in the sense of
Definition 3) and ∫ b

a

f =

∫ b

a
R

f.

Proof. Let a, b ∈ RT \{Φ} where a < b and f : [a, b]→ RT \{Φ} such that
f
(
(a, b)

)
⊂ R and f is Riemann integrable, either as a proper integral or

as an improper integral.
Since a 6= b and Φ /∈ [a, b] we can suppose, without loss of generality,

that xn < xn+1 for all n ∈ N whatever P = (xn)n∈Z ∈ PRT

(
f ; [a, b]

)
. In

this way, the result follows from Theorem 2.1 of [2].

The Theorem 4 shows that the integral defined in the transreal domain
agrees with the usual integral when applied on real numbers.

Next, we show several cases where the integral result is nullity.

Theorem 5. Let a, b ∈ RT where a 6> b and f : [a, b]→ RT . If one of the
following conditions occurs

I) a = Φ,

II) b = Φ,

III) a = b and a /∈ R,

IV) a = b and f(a) /∈ R
V) there is c ∈ (a, b) such that f(x) = Φ for all x ∈ [a, c],

VI) there is c ∈ (a, b) such that f(x) = Φ for all x ∈ [c, b],

VII) f(x) = Φ for all x ∈ (a, b) and |f(a)f(b)| =∞,

then f is integrable and
∫ b

a
f = Φ.

Proof. Let a, b ∈ RT where a 6> b and f : [a, b]→ RT .

I) Suppose a = Φ. For all P = (xn)n∈Z ∈ PRT

(
f ; [a, b]

)
it follows that

limn→−∞ xn = a = Φ whence there is n0 ∈ Z such that xn = Φ for
all n ≤ n0.
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Thus

L
(
f ;P

)
=

∞∑
i=−∞

mi∆xi

=

n0∑
i=−∞

mi∆xi +

∞∑
i=n0+1

mi∆xi

=

n0∑
i=−∞

mi(xi − xi−1) +

∞∑
i=n0+1

mi∆xi

=

n0∑
i=−∞

mi(Φ− Φ) +

∞∑
i=n0+1

mi∆xi

=

n0∑
i=−∞

miΦ +

∞∑
i=n0+1

mi∆xi

=

n0∑
i=−∞

Φ +

∞∑
i=n0+1

mi∆xi

= Φ +

∞∑
i=n0+1

mi∆xi

= Φ

for all P ∈ PRT

(
f ; [a, b]

)
. Thereby

{
L(f ;P ); P ∈ PRT

(
f ; [a, b]

)}
=

{Φ} whence

sup
{
L(f ;P ); P ∈ PRT

(
f ; [a, b]

)}
= Φ.

In an analogous way we can see that

inf
{
U(f ;P ); P ∈ PRT

(
f ; [a, b]

)}
= Φ.

Therefore f is integrable and
∫ b

a
f = Φ.

II) The proof is analogous to item I.

III) Suppose a, b /∈ R and a = b. If a = Φ then the result is already
proved above. If a = −∞ then b = −∞. For all P = (xn)n∈Z ∈
PRT

(
f ; [a, b]

)
it follows that (xn)n∈Z ⊂ [a, b] = [−∞,−∞] = {−∞}

whence xn = −∞ for all n ∈ Z.
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Thus

L
(
f ;P

)
=

∞∑
i=−∞

mi∆xi

=

∞∑
i=−∞

mi(xi − xi−1)

=

∞∑
i=−∞

mi(−∞− (−∞))

=

∞∑
i=−∞

mi(−∞+∞)

=

∞∑
i=−∞

miΦ

=

∞∑
i=−∞

Φ

= Φ

for all P ∈ PRT

(
f ; [a, b]

)
. Thereby

sup
{
L(f ;P ); P ∈ PRT

(
f ; [a, b]

)}
= Φ.

In an analogous way we can see that

inf
{
U(f ;P ); P ∈ PRT

(
f ; [a, b]

)}
= Φ.

Therefore f is integrable and
∫ b

a
f = Φ. If a = ∞ then, in an

analogous way, we can see that f is integrable and
∫ b

a
f = Φ.

IV) Suppose a = b and f(a) /∈ R. For all P = (xn)n∈Z ∈ PRT

(
f ; [a, b]

)
,

since a = b, it follows that (xn)n∈Z ⊂ [a, a] = {a}, that is, xn = a
for all n ∈ Z whence ∆xn = a − a ∈ {0,Φ} and since f(a) /∈ R, it
follows that mn = f(a) /∈ R for all n ∈ Z whence mn∆xn = Φ for
all n ∈ Z. Thus L

(
f ;P

)
= Φ for all P ∈ PRT

(
f ; [a, b]

)
. Thereby

sup
{
L(f ;P ); P ∈ PRT

(
f ; [a, b]

)}
= Φ.

In an analogous way we can see that

inf
{
U(f ;P ); P ∈ PRT

(
f ; [a, b]

)}
= Φ.

Therefore f is integrable and
∫ b

a
f = Φ.

V) Suppose there is c ∈ (a, b) such that f(x) = Φ for all x ∈ [a, c]. Since
c ∈ (a, b) we have that a < c < b whence c ∈ R and a 6= Φ. For
all P = (xn)n∈Z ∈ PRT

(
f ; [a, b]

)
it follows that (xn)n∈Z ⊂ [a, b] and

limn→−∞ xn = a whence there is n0 ∈ Z such that xn ∈ [a, c) for all
n ≤ n0.

7



Thus

L
(
f ;P

)
=

∞∑
i=−∞

mi∆xi

=

n0∑
i=−∞

mi∆xi +

∞∑
i=n0+1

mi∆xi

=

n0∑
i=−∞

Φ∆xi +

∞∑
i=n0+1

mi∆xi

= Φ

for all P ∈ PRT

(
f ; [a, b]

)
. Thereby

sup
{
L(f ;P ); P ∈ PRT

(
f ; [a, b]

)}
= Φ.

In an analogous way we can see that

inf
{
U(f ;P ); P ∈ PRT

(
f ; [a, b]

)}
= Φ.

Therefore f is integrable and
∫ b

a
f = Φ.

VI) The proof is analogous to item V.

VII) Suppose f(x) = Φ for all x ∈ (a, b) and |f(a)f(b)| = ∞. If a = Φ
or b = Φ or a = b the the results follows from item I or II or
IV, respectively. Otherwise, since |f(a)f(b)| = ∞ it follows that
|f(a)||f(b)| = ∞ whence either f(a) = ∞ or f(a) = −∞ or f(b) =
∞ or f(b) = −∞.

If f(a) = ∞ then, for all P = (xn)n∈Z ∈ PRT

(
f ; [a, b]

)
, either

(xn)n∈Z ⊂ (a, b] or there is n0 ∈ Z such that xn0 = a. If (xn)n∈Z ⊂
(a, b] then there is n1 ∈ Z such that xn1 ∈ (a, b) whence f(x) = Φ
for all x ∈ [xn1−1, xn1 ]. Hence mn1 = Φ whence

L
(
f ;P

)
=

∞∑
i=−∞

mi∆xi

=

n1−1∑
i=−∞

mi∆xi + mn1∆xn1 +

∞∑
i=n1+1

mi∆xi

=

n1−1∑
i=−∞

mi∆xi + Φ×∆xn1 +

∞∑
i=n1+1

mi∆xi

=

n1−1∑
i=−∞

mi∆xi + Φ +

∞∑
i=n1+1

mi∆xi

= Φ.
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If there is n0 ∈ Z such that xn0 = a then xn0−1 = a whence ∆xn0 =
a− a ∈ {0,Φ}. Since mn0 = f(a) =∞, mn0∆xn0 = Φ.

L
(
f ;P

)
=

∞∑
i=−∞

mi∆xi

=

n0−1∑
i=−∞

mi∆xi + mn0∆xn0 +

∞∑
i=n0+1

mi∆xi

=

n0−1∑
i=−∞

mi∆xi + Φ +

∞∑
i=n0+1

mi∆xi

= Φ.

Thus L
(
f ;P

)
= Φ for all P ∈ PRT

(
f ; [a, b]

)
. Thereby

sup
{
L(f ;P ); P ∈ PRT

(
f ; [a, b]

)}
= Φ.

In an analogous way we can see that

inf
{
U(f ;P ); P ∈ PRT

(
f ; [a, b]

)}
= Φ.

Therefore f is integrable and
∫ b

a
f = Φ.

In an analogous way we can see that f is integrable and
∫ b

a
f = Φ if

f(a) = −∞ or f(b) =∞ or f(b) = −∞.

4 Conclusion

An integral on transreal numbers was first defined in [5]. That integral
is not the most general one because there are functions integrable in the
usual sense which are not integrable in the sense of [5]. The present paper
has taken the approach from [2] and defined an integral on transreal num-
bers which generalises the usual integral on real numbers. Every function
integrable in the usual (Riemann) sense, properly or improperly, is inte-
grable in the sense introduced here. In addition, several arrangements of
transreal numbers make the integral results nullity.
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