
Thought Experiments as logical transformations

In Transreal Logical Space:

Re-Examining the

Einstein, Podolsky and Rosen Paradox

Walter Gomide

Department of Philosophy
Federal University of Mato Grosso

Brazil
78060-900

waltergomide@yahoo.com

Submitted: 15 April 2019
Revised: 21 May 2019

Abstract

In this article, from the concepts of formal causality and logical trans-
formation, defined with transreal numbers, I intend to re-analyze the fa-
mous Einstein, Podolsky and Rosen paradox (the EPR paradox), accord-
ing to which Quantum Mechanics is incomplete. In order to make such
an analysis of the paradox, I present a general definition of thought ex-
periments, in terms of the concept of logical transformation in a transreal
logical space, and show that the EPR paradox, in broad outlines, bases
the incomplete character of Quantum Mechanics on the fact of not hav-
ing a formal causality between the ideal and concrete worlds of quantum
theory - these concepts, the“ideal and concrete worlds”, by their turn, are
inspired by the work of the American physicist Wolfgang Smith.

1 What is a Thought Experiment?
A Very General Mathematical Approach

What is a thought experiment? This research tries to answer that question
within the domain of transreal numbers, and by appealing to some meta-
physical considerations that lead us to the concept of formal causality, an
Aristotelian-Platonic notion.
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This research is not a historical one, but intends to be a theoretical
attempt to answer the question concerning what is the nature of a thought
experiment.

First of all, I am considering that, at first glance, a thought experiment
is a logical transformation (to be formally defined latter) that implies some
theoretical conclusions from some ideal descriptions of the world to the
real world. In every thought experiment, there is a nucleus that can be
described as follows: an experiment in some ideal world Wi is mentally
made by some researcher, and this experiment generates a conclusion
about the real world Wr. In a very general way, a thought experiment
could be seen as a relation E between two worlds, an ideal world and
the real world. We can also stress that a thought experiment can be
considered as a transformation T between an ideal world Wi and the real
world Wr. In other words:

T (Wi) = Wr ⇐⇒ E (Wi,Wr) .

In the logical expression, above, we are dealing with the concept of
world in a mathematical sense: a world is a point or a vector in some kind
of logical space. Later, I will present some mathematical instruments,
based on transreal numbers, that are sufficient to give a formal definition
of relations between worlds.

In philosophical terms, a thought experiment is a relation or a transfor-
mation between worlds that are similar to each other. But such similarity
lies in the fact that they share the same causal relations regarding some
aspects of the real world: if the ideal world is organized by some causal
relation Ci between their ideal components, then the causal relation Cr

that organizes the real correspondents of the ideal components is similar
to Ci.

Thus, in some sense, the causal similarity between ideal and real worlds
is a postulate of the efficacy of the thought experiment; and I admit that
this similarity is based upon the notion of formal causality between ideal
and real world.

2 Formal Causality

For giving an idea of what shall be considered as formal causality between
worlds, I will follow some ideas developed by the American Physicist Wolf-
gang Smith in his book The Quantum Enigma. Finding the Hidden Key
[7]. In this work, Smith considers that there are two disconnected worlds
in the physical realm, the physical world, a mathematically structured
world of which mathematical-physical theories are testimonies, and the
concrete world, the world in which apparatus of measurements and ob-
servers – people who make measurements – are located. The physical
realm is the interaction of these two worlds, and physical theories guide
us in how to deal with the concrete world.

My idea is that the disconnectedness between such worlds could be
expressed mathematically by means of the transreal number nullity, Φ,
the number that “measures” the indeterminate or the disconnectedness
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between two points: if the distance between two points is nullity, then no
information can physically travel between them.

According to what is expressed above, the connection between physical
and concrete worlds is not of a physical nature; but we can postulate some
metaphysical relation between them, and such metaphysical connection
I will call formal causality : every true mathematical expression in the
physical world “causes” a true expression in the concrete world. In others
words, a true mathematical theory in the realm of the physical world gives
to us a true description of the concrete world [4].

3 The Concepts of Transreal Logical
Space and Logical Transformation

Transreal numbers were created, around 1997, by James A. D. W. Ander-
son, an English Computer Scientist. For a modern treatment see [6]. The
transreal numbers augment the real numbers with three new numbers,
namely: negative infinity, −∞ = −1/0; positive infinity, ∞ = 1/0; and
nullity, Φ = 0/0. The transreal numbers allow division by zero, a division
forbidden in the realm of real numbers.

The transreal number, nullity, is the uniquely unordered, transreal,
number with the property, t 6< Φ and t 6> Φ for all transreal numbers, t.

Before introducing an interpretation of a thought experiment within
transreal logical space, it is necessary to present the concept of “total se-
mantics”, see [1], a semantics in which all logical possibilities are modelled
with transreal numbers. Basically, the idea is the following:

a) If a proposition α has some degree of Truehood, then the transreal
numbers r related to α is greater than zero: r > 0;

b) If a proposition α has some degree of Falsehood, then the transreal
numbers r related to α is lower than zero: r < 0;

c) If a proposition α is Absolutely True, then the transreal number r
related to α is ∞: r =∞;

d) If a proposition α is Absolutely False, then the transreal number r
related to α is −∞: r = −∞;

e) If a proposition α is neither True nor False (a gap), then the transreal
number r related to α is Φ: r = Φ;

f) If a proposition α is both True and False (a glut), then the transreal
number r related to α is 0: r = 0.

If the propositions α and β have associated to them respectively the
transreal numbers a and b, in such way that a < b, then we say β is truer
than α; if a > b, then we say that β is falser than α.

Transreal numbers are shown in the following picture:
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Now we can introduce the concept of transreal logical space. The
transreal logical space can be defined as a trans-vector space (see [1]) in
which we can represent a possible world as a sequence of transreal numbers
[5]. In other words, a possible world Wa is represented by a sequence

〈αa1, αa2, αa3, . . . 〉,

in which each αak is a transreal number, interpreted semantically accord-
ing to what was expressed above, that tells us the Truth value of the
proposition αk (an atomic proposition) at the possible world a. By such
considerations, we can say that the atomic propositions are seen as the
axes of the transreal logical space.

Then we can say that a transreal logical space (RT )N is the set of all
possible worlds, a continuous set, seen as points or trans-vectors in the
logical space (RT )N.

If we are considering possible worlds as points or trans-vectors, then
we are able to use geometrical operations on them in such way that these
operations can be interpreted logically. An example of this is the concept
of a general transformation in (RT )N, by which we can go from a possible
world Wm to a possible world Wn, by means of a transformation T :

T (Wm) = Wn ↔ T 〈αm1, αm2, αm3, . . . 〉 = 〈αn1, αn2, αn3, . . . 〉.

In the expression above, we are saying that Wm goes to Wn by means of
the transformation T .

Now we can define a special kind of transformation that is the transla-
tion of the concept of logical inference into the Transreal Space (RT )N. As
is well known, a logical inference – a first-class object – is an inferential
schema that goes from premises to conclusion in such way that we can
never go from True to False, but the opposite is allowed. Within logical
space, in a very general mathematical way of expressing it, we can say that
a logical inference can be translated as logical transformation, such that
a logical transformation L is a transformation that goes from the possible
world Wi to the possible Wj in such way that every component of Wj is
greater than or equal with its correspondent in Wi. In other words:

L(Wm) = Wn ↔ L〈αm1, αm2, αm3, . . . 〉 = 〈αn1, αn2, αn3, . . . 〉

such that:

1) αn1 ≥ αm1;
2) αn2 ≥ αm2;
3) αn3 ≥ αm3;

...
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The clauses 1), 2), 3), . . . guarantee that the truth values of the com-
ponents of the possible world Wn – a possible world that can be seen
as the “conclusion-point” of a logical displacement that begins in Wm –
are truer than the components of the possible world Wm, and that fact,
in some sense, translates into logical space the intuitive idea behind the
concept of logical inference.

Now I can say some words about a thought experiment and its relation
with Transreal logical space and logical transformations.

4 Thought Experiment and
Logical Transformation

In this section, I will try to develop my approach to thought experiments.
I will follow the ideas presented in the first and second sections of this
paper. From such a perspective, a thought experiment will be defined
as a logical transformation between an ideal world Wi – a theoretical
world in which we have a mathematical structure or “pure concept” –
and a concrete world Wr – a world in which we have real or idealized
measurements and within it we find actual or idealized observers. Then, a
thought experiment is a postulated displacement of worlds, between which
we want to show that there is or there is not a formal causality. That is,
by means of a thought experiment, we want to demonstrate that an Ideal
world acts or does not act on a specific concrete world, the real world
or some variant of it. And what I assume here is that formal causality
between worlds can be translated into logical space as the concept of
logical transformation. Now we can introduce two possibilities:

A) If you want to prove that there is a formal causality between worlds,
then we have a weak thought experiment ;

B) If you want to prove that there is not a formal causality between
worlds, then we have a strong thought experiment.

In this way, let us suppose that we have a theory Γ given as a set of a
denumerable propositions εk, namely:

Γ : {ε1, ε2, . . . , εm, . . . } .

So, the sequence of transreal numbers

〈εi1, εi2, . . . , εim, . . . 〉

is a possible world Wi in which we evaluate the truehood or falsehood of
the theory Γ and its components. If there is a formal causality between
Wi and Wr, then there is a logical transformation L(Wi) = Wr; and we
say that such a transformation between Wi and Wr is a weak thought
experiment between Wi and Wr. In other words:

L (Wi) = Wr ↔ Ew (Wi) = Wr.

Let us suppose we prove that the theory Γ is absolutely false in the
world Wi. For the sake of simplicity, we represent this fact by the se-
quence:

WΓ
i = 〈−∞,−∞, . . . ,−∞, . . . 〉.
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In this way, a weak thought experiment with Γ is a logical transforma-
tion between WΓ

i and a possible world WΓ
r that has the relation of formal

causality with Wr; then, we have:

Ew =
(
WΓ

i

)
= WΓ

r ↔ E〈−∞,−∞, . . . ,−∞, . . . 〉 = 〈r1, r2, . . . , rm, . . . 〉,

such that:

1) r1 ≥ −∞;
2) r2 ≥ −∞;
3) r3 ≥ −∞;

...

Obviously, every absolutely false theory acts formally on every world,
except in those worlds where the components of the theory have truth
values equal with nullity.

Therefore, the essence of a thought experiment is to be an argument
in which premises and conclusion are seen as possible worlds and, for that
reason, we can substitute the usual concept of logical inference by the
geometric idea of logical transformation.

5 EPR Paradox: A Thought Experiment
in Quantum Mechanics

In 1935, Albert Einstein, Boris Podolski and Nathan Rosen published an
article whose aim was to demonstrate the incompleteness of Quantum Me-
chanics [3]. By the incomplete character of Quantum Mechanics, we mean
the fact that the mathematical formalism of Quantum Mechanics, with
its predictions of measure, does not determine real physical entities: when
establishing in theory that the value of a quantity must be a certain real
number, this does not imply the actual existence of this quantity; there
is no correspondence between the theoretical entities and their predicted
values with the observable reality.

In order to demonstrate such incompleteness in Quantum Mechan-
ics, the aforementioned authors used a mental experiment known as the
“Einstein, Podolski and Rosen Paradox”- henceforth, abbreviated to EPR
Paradox.

Basically, to carry out the EPR paradox, the path is as follows: In
Quantum Mechanics, all information that can be obtained from the state
of a system is given by the wave function Ψ. More precisely, let a physical
quantity A be given, to which we associate the Hermitian operator Â,
which operator, when acting on the eigenfunction Ψa, determines the
following identity:

ÂΨa = aΨa,

where a is a real number (an eigenvalue of operator Â) which will be the
measured value of quantity A when it is in state Ψa. Therefore, if we
postulate that Quantum Mechanics is complete, then the magnitude A
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will have real existence in state Ψa, since its value is predicted by theory
for this state.

Let us now consider a physically observable magnitude B, to which
we associate the Hermitian operator B̂. In an analogous way to what
happens with the magnitude A, when B is in state Ψb, then we have the
following identity:

B̂Ψb = bΨb.

In which b is the predicted value of the magnitude B, since this is in
state Ψb.

Let us postulate, too, that Â and B̂ do not commute, namely:

ÂB̂ 6= B̂Â.

In this case, we know, according to the Heisenberg Uncertainty Prin-
ciple, that if we precisely measure the magnitude A, then the magnitude
B will have its measurement completely indeterminate at the instant at
which the measurement of A is done. Thus, if the theory predicts a precise
value of A, for a determinate state, then, for the same state, the theory
must predict the complete indeterminacy of B. In this way, the magni-
tudes A and B cannot have simultaneous physical realities, since we admit
the completeness of Quantum Mechanics.

We admit now that two physical systems I and II have interacted
in the past through a time interval T = t2 − t1. In this way, for all
instants t > t2, according to the Schrödinger Equation, the state of the
“entangled” system I + II can be described in the following way:

ΨI+II (x1, x2) =

∞∑
n=1

ψn (x2)un (x1) ,

in which x1 and x2 are variables associated with the systems I and II,
and un(x1) are eigenfunctions related to the operator Â, linked to the
system I, with eigenvalues an; ψn (x2) are the coefficients of expansion of
ΨI+II (x1, x2) in the orthogonal basis formed by un(x1).

If we measure the magnitude A in the system I, we can find, as the
value of the measurement, the eigenvalue ak and, in this case, the state
of the system I + II will be the reduced state

ψk (x2)uk (x1) .

Therefore, after the measurement of A in I, the systems I and II are
respectively at the states uk (x1) and ψk (x2).

Now we can choose, as the orthogonal basis of equation ΨI+II (x1, x2),

the eigenfunctions vs (x1), that are connected to the operator B̂ with

eigenvalues bs. As said before, we are assuming that B̂ does not commute
with Â. Then, we can represent ΨI+II (x1, x2) in the following way:

ΨI+II (x1, x2) =

∞∑
s=1

φs (x2) vs (x1) ,

in which φs (x2) are the coefficients of expansion of the eigenfunctions
vs (x1). If we measure the magnitude B in the system I, we can find, as
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the measured value, the eigenvalue br. Thus, the system I + II will be
reduced to the system φs (x2) vs (x1): the system I is at state φs (x2), and
the system II is at state vs (x1).

As we are postulating that Â and B̂ do not commute, when A is per-
fectly determined in the system, then, in the same system, B is completely
indeterminate; and when B is perfectly determined in the system, then A
is entirely indeterminate in the same system. Then, by the completeness
criterion, A and B cannot have simultaneous physical reality according to
the Heisenberg Uncertainty principle.

But the Gedankenexperiment, shown above, is a thought experiment
that uses the concept of an “entangled” system to reveal the following
paradoxical situation: what happens at the system I has a direct influ-
ence on the possible measurements that can be performed at system II.
From the theoretical perspective of the “entangled” Schrödinger Equa-
tion, regarding the magnitude A, the probability of system II being in
state ψk(x2) is unity, when a measurement of A is done at I, and the state
uk(x1) is found as the result of the measurement. Then, at the same time,
instantaneously, any measurement of B that could be done at II would be
completely indeterminate, even if no measurement of A at system II is
done. But if no measurements of A is done at II, we can expect that the
measurement of B at II would be determinate: if we perform a measure-
ment of B at II, without measuring A at II, we will find some definite real
number as the result. Thus, without a measurement of A done in II, A
and B coexist at II as potentialities that express mathematically as prob-
abilities. However, if a measurement of A is done at I, B cannot exist as a
potentiality at II, since its measurement is completely indeterminate. But
such a paradoxical situation results from the fact that we are admitting
the completeness of Quantum Mechanics: the mathematical apparatus of
Quantum Mechanics corresponds to determined physical realities. Since
from that thesis we can infer a paradoxical situation, we must deny the
completeness of Quantum Mechanics, and that was the conclusion from
that Gedankenexperiment performed by Einstein, Podolsky and Rosen –
the famous EPR paradox.

In fact, we can present the EPR paradox in a more analytical way.
From this perspective, the paradox emerges from the fact that we are
admitting the completeness of Quantum Mechanics, along with the fact
that such completeness implies the simultaneous existence in reality of
predicted theoretical entities, would result in the possibility of a simulta-
neous measurement of these theoretical entities that are predicted by the
theory. But the Heisenberg Principle denies such simultaneous measuring;
then, we must deny the completeness of Quantum Mechanics.

The Brazilian philosopher Silvio Chibeni presents an explicit deriva-
tion of the EPR Paradox, built within propositional calculus. Chibeni’s
derivation is as follows, using the predicates

C: the quantum mechanical description of reality is complete;
SR: conjugate quantities can have simultaneous reality;
QMAB : Quantum Mechanics affords simultaneous precise values to the
conjugate quantities A and B.
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1. (SR & C)→ QMAB [completeness criterion]
2. ¬(QMAB) [QM : Heisenberg Uncertainty Principle]
3. ¬(SR & C) [1 and 2]

4. ¬C ∨ ¬SR [3]
5. C → SR [reality criterion applied to the correlated pairs]
6. C → ¬SR [4]

7. C → (SR & ¬SR) [5 and 6]
8. ¬C

([2], pp. 5–6).

Then, we can infer that Quantum Mechanics is not complete, since
this assumption lead us to a paradox: conjugate quantities – quantities
that don’t commute – can have simultaneously reality and cannot have
simultaneously reality.

6 A Transreal Analysis of EPR Paradox

Let me now present a version of EPR Paradox embedded into the concept
of logical transformation. First of all, I will consider the EPR Paradox
as the conclusion that there is no logical transformation between an ideal
version of Quantum Mechanics and its concrete version in which there is
an “entangled” system. In other words, the EPR Paradox, in its Transreal
version, shows that there is no formal causality between an ideal model
of Quantum Mechanics and its “entangled” model. Therefore, EPR is a
strong thought experiment.

Let us start the analysis of the EPR paradox by assuming that the ideal
model of Quantum Mechanics is a world in which no measurement is done,
and all we have is the mathematical apparatus of Quantum Mechanics.
We also admit that we can express the ideal model of Quantum Mechanics
as an enumerable list of proposition in which we can find what we must
expect about the states concerning two conjugate quantities A and B at
two system I and II that do not interact each other. Thus, our ideal
model of Quantum mechanics will be:

QI = 〈qi1, qi2, . . . , qim, . . . 〉.

Regarding the system II, there is a qkm, a transreal number that
belongs to RT \ {Φ}, that can be associated with the proposition:

v(Ψ〈B̂; II; a〉) = qkm.

The proposition above says that the truth value of the proposition that
says that the operator B̂; regarding the system II, if some measurement
is done, has the eigenvalue a is equal with qkm. This number could be
any transreal number, except nullity: in this case, the mentioned physical
description of the state of the system II regarding the magnitude B will
be completely indeterminate, but this case would occur if, and only if, a
measurement of the conjugate quantity A was done at II at same time
when the measurement of B is being performed.
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Now let’s consider a concrete world or model QC in which we have
the “entanglement” of the system I and II and we have also an idealized
observer O that performs a measurement of A at the system I. As shown
above in the EPR paradox, if the measurement of A gives to us the state

Ψ〈Â; I; k〉,

then, by some kind of superluminal causality, instantaneously, the mag-
nitude A at system II has the determinate eigenvalue k′. Therefore, the
following conditional is absolutely true in the model QC .

If v
(

Ψ◦〈Â; I; k〉
)

=∞, then v
(

Ψ〈Â; II; k〉
)

=∞.

Thus, since the ideal observer O does the measurement of A at I and
finds the eigenvalue k, then we can affirm that

v
(

Ψ〈Â; II; k〉
)

=∞.

But, in this case, we have necessarily by Heisenberg’s Uncertainty
Principle that:

v
(

Ψ〈B̂; II; a〉
)

= Φ.

Since A and B are conjugate quantities whose operators do not com-
mute, if A has a determinate eigenvalue at II, simultaneously the corre-
spondent eigenvalue of B is completely indeterminate.

Now let us postulate that there is a logical transformation G between
the worlds QI and QC , in such way that equal propositions occupy the
same position in the sequences corresponding to QI and QC respectively.
Then, if there is logical transformation G(QI , QC), we expect that:

G
(
QI
)

= QC ↔ G〈q1, q2, . . . , qi, . . . 〉 = 〈g1, g2, . . . , gi, . . . 〉

in such way that:

1) g1 ≥ q1;
2) g2 ≥ q2;
3) g3 ≥ q3;

...

Clearly, such a logical transformation does not exist. To prove this, let
us consider that the proposition Ψ〈B̂; II; a〉 occupies the m-th position in
the possible world QI and must occupy the same position in the possible
world QC . But

v(Ψ〈B̂; II; a〉) = Φ ≥ v(Ψ〈B̂; II; a〉) = qm,

in which
qm ∈ RT \ {Φ},

is obviously false in transreal arithmetic, and the condition for the exis-
tence of such transformation between QI and QC , as presented above, is
not satisfied.

Then, in its Transreal version, EPR paradox shows that there is no
formal causality between QI and QC ; then G(QI , QC) is a strong thought
experiment between QI and QC .
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7 Conclusion

In this small article, I present an analysis of the EPR paradox, a thought
experiment, from the concept of logical transformations in transreal logical
space. Such a general analysis could be an epistemic instrument to be used
in Philosophy of Science and in the methodology of science. With the
aid of this very general concept of thought experiment, based on transreal
numbers, the clarifying of what a thought experiment is might be achieved.
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