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Abstract

The idea that, as opposed to the conventional viewpoint, division by zero
may produce a meaningful result, is long standing and has attracted inter-
est from many sides. We provide a survey of some options for defining an
outcome for the application of division in case the second argument equals
zero. The survey is limited by a combination of simplifying assumptions
which are grouped together in the idea of a premeadow, which generalises
the notion of an associative transfield.

1 Introduction

The number of options available for assigning a meaning to the expression 1/0
is remarkably large. In order to provide an informative survey of such options
some conditions may be imposed, thereby reducing the number of options. I
will understand an option for division by zero as an arithmetical datatype, i.e.
an algebra, with the following signature:

• a single sort with name V ,

• constants 0 (zero) and 1 (one) for sort V ,

• 2-place functions · (multiplication) and + (addition),

• unary functions − (additive inverse, also called opposite) and −1 (mul-
tiplicative inverse),

• 2 place functions − (subtraction) and / (division).

Decimal notations like 2, 17,−8 are used as abbreviations, e.g. 2 = 1 + 1, and
−3 = −((1 + 1) + 1). With inverse the multiplicative inverse is meant, while the
additive inverse is referred to as opposite.
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This signature is referred to as the signature of meadows ΣMd in [6], with
the understanding that both inverse and division (and both opposite and sub-
traction) are present.

A number of assumptions will be made with the intention to limit the scope of
the discussion to manageable proportions. We consider an arithmetic datatype
with domain |V | for sort V , and we assume that the following conditions are
met.

Nontriviality. 0 6= 1.

Totality. Addition, opposite, subtraction, multiplication, inverse, and division
are total functions.

Additive monoid. (|V |, + , 0) is a commutative monoid (for all x ∈ |V |,
x+ 0 = 0 + x = x, and addition is commutative and associative).

Multiplicative monoid. (|V |, · , 1) is a commutative monoid (for all x ∈ |V |,
x · 1 = 1 · x = x, and multiplication is commutative and associative).

Zero is idempotent. 0 · 0 = 0 (that 1 is idempotent follows from the additive
monoid requirement.)

Opposite. x+y = 0→ y = −x (opposite produces all proper additive inverses).

The opposite of one is a proper additive inverse. 1 + (−1) = 0.

Inverse. x · y = 1 → y = x−1 (inverse produces all proper multiplicative
inverses).

Subtraction. x−y = x+(−y) (and therefore in combination with the additive
monoidal structure: −x = 0− x.)

Division. x/y = x · x−1 (and therefore in combination with the multiplicative
monoidal structure: x−1 = 1/x.)

Arithmetical datatypes which meet these requirements may have many unusual
properties. Below we will find that plausible equations like x− x = 0, x · x−1 =
1, x·(y+z) = x·y+x·z, (1/x)·(1/y) = 1/(x·y) are refuted in some of the options
for arithmetic that are considered. A (nontrivial) premeadow is a datatype
(algebra) which satisfies each of the above requirements. We notice that unicity
of proper additive inverses follows from the additive monoidal structure: if
x+y = 0 = x+z, then y = 0+y = (x+z)+y = (x+y)+z = 0+z = z. Similarly
the multiplicative monoidal structure implies that proper multiplicative inverses
are unique.

The notion of a premeadow is very close to but slightly less demanding than
the notion of a transfield as introduced in [21]. More precisely, all associative
transfields are premeadows (a transfield may have a nonassicative addition).
While a transfield must have a field as a substructure of its reduct to the signa-
ture of rings, a premeadow need not necessarily include a field. Every transfield
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is a premeadow, however, and every premeadow for which the reduct upon for-
getting the inverse function and division contains a field as a substructure is a
transfield. In particular every meadow is a premeadow, but not every meadow
is a transfield. We refer to [12] for examples of meadows that are not transfields.

The constraints of a premeadow rule out certain mechanisms from floating
point arithmetic. For instance if one assumes the existence of a positive zero, say
0+ (which may or may not be identified with the unsigned zero 0) and a negative
zero, say 0−, where the negative zero satisfies 1 + 0− = 1 and (−1) + 0− = −1
then it follows from the requirements of a premeadow that 0− = 0− + 0 =
0− + (1 + (−1)) = (0− + 1) + (−1) = (1 + 0−) + (−1) = 1 + (−1) = 0 and
formalisation in terms of a premeadow cannot be used to explain how and why
0 and 0− differ. The question to which extent existing as well as conceivable
floating point models can be faithfully and productively modelled by means of
algebras and abstract datatypes seems not to have received much attention and
it seems fair to say that floating point arithmetic cannot be used as an argument
in favour of any design of a specific arithmetical datatype involving division by
zero.

Our discussion will be confined to premeadows with characteristic 0. Gen-
eralisation of the definitions below to the case of characteristic p > 0 is unprob-
lematic, however.

Because subtraction and division are found by means of explicit definition
from opposite and inverse, the presence of these 2 place operations is merely
a matter of notational convenience below. The notion of a fraction, however,
depends on the presence of a division operation in the signature. Following [8] a
fraction is defined as expression over the signature ΣMd, or an extension thereof,
with division as the leading function symbol. For a fraction P/Q, P is called its
numerator and Q is called its denominator. It follows from these conventions
that both the numerator and the denominator of a fraction are expressions.

Definition 1.1. A premeadow is an algebra with signature ΣMd which satis-
fies the above 10 requirements with the possible exception of nontriviality. A
nontrivial premeadow is a premeadow in which 0 6= 1.

Premeadows constitute a quasi-variety because all of the listed requirements
take the form of conditional equations.

1.1 On the significance of signatures for “division by zero”

The importance of being explicit about signatures is twofold. First of all with a
signature comes a natural notion of syntax, and as a consequence a distinction
between syntax and semantics. Secondly, upon having adopted the signature of
meadows, the status of an expression 1/0 is entirely unproblematic, and for that
reason the question about its meaning is not only a reasonable issue, but it has
even become an unavoidable matter. Working with signatures and in particular
working with the signature of meadows creates a context in which the topic of
division by zero arises in a natural manner. Questions about division by zero
can only arise if inverse and/or division are understood as operations for which
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the interpretation is not fixed for once and for all. The situation for opposite and
for inverse is comparable: the opposite of a value may not be a proper additive
inverse of it, and the inverse of a value may not be a proper multiplicative
inverse of it. In both cases we choose not to have a function symbol for “the
proper inverse of” in the signature, and this choice is primarily motivated by
the advantages of working with total algebras.

It is left up to the design of a model, that is the choice of semantics, to
determine the meaning of any expression, in particular of expressions like 1/0.

ΣMd extends the signature of rings with inverse and division. The signa-
ture of fields, however, if one wishes to think in those terms, is the same as
the signature of rings, and does not include either inverse or division. As a
consequence, in the setting of fields, it is implausible to view, say the equation
x−1 · y−1 = (x · y)−1 as a potential axiom about the inverse function. Assuming
in the context of fields that one considers inverse to be a partial function, then
the meaning of this equation is quite sensitive to the logic of partial functions
which one prefers to adopt. Indeed, adopting the axiom may have an impact on
the domain of the inverse function, which introduces a risk of circular reasoning.

In the context of premeadows, however, such an equation is perfectly plau-
sible as an axiom. The limitation to commutative multiplication is a matter of
convenience, and most of the topics discussed in the paper admit generalisation
to the non-commutative (also called skew) case.

The terminology of inverse functions merits some further attention. In the
following definitions φ may be a partial function.

Definition 1.2. A total or partial function φ( ) captures multiplicative inverses
if for all x and y in |V |, if x · y = 1 then in φ(x) is defined and x · φ(x) = 1.

Definition 1.3. A unary operator φ( ) is a multiplicative inverse operator if it
captures multiplicative inverses.

These definitions motivate the terminology used above when referring to −1

as a multiplicative inverse on the basis of the requirement x·y = 1→ y = x−1. It
is possible that besides −1 other functions, which may have an explicit definition
over the signature of meadows, also capture multiplicative inverses. With inverse
we will refer to the specific (total) multiplicative inverse −1.

Definition 1.4. A function φ( ) produces multiplicative inverses if for all x in
its domain, x · φ(x) = 1.

From these assumptions an important conclusion can be derived:

Proposition 1.1. The inverse operator in a non-trivial premeadow does not
produce a multiplicative inverse for 0.

Proof. Assume that −1 produces a multiplicative inverse q = 0−1 on 0, then:
0 = 0 · 1 = 0 · (0 · q) = (0 · 0) · q = 0 · q = 1, which contradicts the non-triviality
assumption on the premeadow at hand.
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In a similar manner one finds that if an inverse operator produces multi-
plicative inverses it cannot have 0 as a result. Many authors experiment with
1/∞ = 0 or variations thereof and the following result applies to such proposals.

Proposition 1.2. If the inverse operator in a non-trivial premeadow produces
proper multiplicative inverses on all nonzero arguments it does not produce value
0 on any nonzero argument.

Proof. Assume that −1 is an operator which produces proper multiplicative
inverses and which takes value 0 on argument q 6= 0, i.e. q−1 = 0 and q ·q−1 = 1.
Then 1 = 1 ·1 = (q ·q−1) ·(q ·q−1) = (q ·0) ·(q ·0) = q ·(0 ·(q ·0)) = q ·((q ·0) ·0) =
q · (q · (0 · 0)) = (q · q) · (0 · 0) = (q · q) · 0 = q · (q · 0) = q · (0 · q) = q · 1 = q. Now
combining 1 = q with the assumption q · q−1 = 1 yields 1 = q · q−1 = 1 · 0 = 0
which contradicts the non-triviality requirement.

The subject of division by zero, under the constraints mentioned above, is
about the design of versions of arithmetic which include multiplication and an
inverse function which produces proper inverses when these exist and which is
defined on 0.

It is an implicit assumption that arithmetic is not fixed for once and for all,
in other words that different designs of arithmetic are possible and are worth
investigation. At the same time arithmetic is merely an intuitive notion which
grasps systems of numbers equipped with constants and operations from various
signatures.

1.2 Options outside the quasivariety of premeadows

Several authors have proposed a perspective on division by zero which allows
for 0 · 0−1 = 1. For instance in [16] 1/0 = ∞ is adopted in combination
with 1 · ∞ = 1. Such proposals are significant, but seem to be technically
less accessible than proposals which are compatible with the requirements of
premeadows. With Proposition 1.1 the existence of a proper inverse of zero is
ruled out in premeadows, however. As stated above the survey of this paper will
stay within the confinements of premeadows and therefore none of the options
which are discussed below satisfy the identity 0 · 0−1 = 1.

2 From the conventional approach to 1/0 to mo-
tivating alternatives

It is often assumed that the ordinary conventions for dealing with the partial
multiplicative inverse operator are well-known and self-evident. That may be
the case but writing explicitly about such conventions is not entirely straight-
forward. It seems to be the case that notations like 1/0 have no place in pro-
fessional mathematics. Not only do such notations not occur, such notations
do not occur for a good reason which is understood to be based on common
background knowledge. It is the nature of this background knowledge which
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must be made explicit, and then upon having been made explicit it may or may
not require further substantiation. Now the mere fact that 1/0 has no meaning
is no principled reason for the strong preference for not using 1/0 as a notation
in a professional text.

Consider the infinite sums Pk = Σ∞n=k1/n for k a nonzero natural number.
It is reasonable to state that P1 = 1 + P2 and it is also reasonable to say that
P1 diverges, which means that it is not defined and therefore that it has no
numerical value. The idea that P1 diverges is compatible with P1 = ∞. With
Qk = Σ∞n=k(−1)n · n, however, it is still reasonable to state that Q1 = −1 +Q2

while the Qk exist even less than the Pk as the Qk represent sums which don’t
even converge to ∞ or to −∞.

Now consider the assertion that 1/0 is undefined. It seems to be the case
that the latter assertion is not acceptable as a constituent of a competent math-
ematical text. One may conclude that 1/0 is to a lesser extent a fraction than
that Σ∞n=k1/n is a sum.

2.1 Principled (conventional) interpretation of the divi-
sion sign

Mathematical conventions allow remarkable flexibility. Working in binary no-
tation it is common to read 10 as the number two and the equation 1 + 1 = 10
makes sense. And working modulo 3 it is known that 1 + 2 = 0. Working in a
non-standard model of the Peano axioms of arithmetic addition and multipli-
cation work in unexpected ways. However, when it comes to 1/0 there seems
to be no semantic flexibility left as 1/0 = q can only hold if 0 · q = 1, which is
problematic indeed.

Suppose one introduces an absorptive error value ⊥ such that 1/0 = ⊥ and
such that the error propagates through all operations. Then ⊥ + (−⊥) = ⊥.
It follows that the introduction of an error value calls into question the use of
the opposite, for which one may expect that adopting the rule x + (−x) = 0
constitutes a very firm commitment, a commitment the deviation of which is just
as problematic, or even more problematic that deviating from a commitment to
0 · 0−1 = 1. It follows from this observation that already adopting the existence
of an error value as the result of division by zero would be incompatible with
deeply rooted intuitions and conventions on the use of mathematical notations.

It may be the case that the conception that 1/0 does not exist is the most
rigidly held convention of all conventions regarding the use of elementary math-
ematical notation. Not only is 1/0 non-existent but as an idea it embodies
the very concept of mathematical non-existence, which might even be prior to
the concept of existence in the same way as the idea of inconsistency may be
prior to the idea of consistency. It is intuitively obvious that the concept of the
non-existence of a conceivable entity is hardly communicated in a best possible
manner by having a preferred notation for precisely that entity.
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2.2 Context dependence of occurrences of division

For an expression P of the form Q/R to occur in a text, in a specific position, it
is conventionally required that the text embeds said (specific) occurrence of P in
a context which is such that from the assumptions imposed on the parameters
that are available in the given context it can be inferred, either formally or
informally, but in any case to the reader’s satisfaction, that R is nonzero.

For instance the assertion “for all x 6= 0 it is the case that x · (1/x) = 1”
complies with the mentioned requirement on contexts: 1/x occurs in a context
in which it has been assumed that x is nonzero. The mentioned assertion is
therefore regarded as unproblematic form the perspective of division by zero.

In contrast with these observations the first order sentence χ defined by
χ ≡ ∀x ∈ Q (x 6= 0 → x · (1/x) = 1) is somehow troublesome. For χ to be
true it must be the case that substituting 0 for x produces a true statement
[0/x]χ ≡ 0 6= 0 → 0 · (1/0) = 1. Now for [0/x]χ to be considered a valid
assertion each of its components must have some truth value, at least when
adopting a classical two-valued logic. Thus either 0 · (1/0) = 1 is considered
true or 0 · (1/0) 6= 1 is considered true but conventional mathematics commits
to neither of these as 0 · (1/0) is considered undefined.

For Φ ≡ ∀x ∈ Q(x 6= 0→ x·(1/x) = 1) to be considered true some additional
assumptions are required. Indeed a plurality of disparate strategies can be used
to that end. We list some options:

1. a logic of partial functions may be used (there are many options for logics
of partial functions) which incorporates a three valued logic, or

2. the occurrence of 1/0 is considered to denote an error value in an ordinary
error algebra so that 0 · (1/0) 6= 1 is satisfied, or

3. the universal quantifier is understood as an infinitary conjunction by read-
ing Φ as

∧
q∈Q,q 6=0(q · (1/q) = 1), with the effect that no subformula in-

volving 1/0 appears, or

4. the implication connective in [0/x]χ is understood in terms of a short
circuit logic, in which the conclusion of the implication is only evaluated
once (i.e. after) the condition has been found valid.

2.3 Syntax versus semantics: not a conventional intuition

Returning to the legitimacy of writing expressions like 1/0 in conventional math-
ematical practice we notice that in conventional mathematics it is not even
plausible to ask for the value of 1/0 because there is no notion of syntax which
entitles 1/0 to the status of being asked questions about. In other words, an
expression is a tool for denoting an entity, and whoever makes use of the expres-
sion is supposed to have sorted out in advance why doing so is realistic. But
conventional mathematics is also pragmatic and liberal to some extent. When
stating that the fraction 4/6 is not simplified, reference is made to the fraction
as an expression, rather than to the rational number which it denotes. Asking
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if the fraction 1/0 has a value is likely to be countered with the objection that
1/0 is not a fraction, just because it has no value.

The idea of a contrast between syntax and semantics, where syntax consists
of expressions, to the extent that one may always ask whether or not an ex-
pression is legal, and do so in advance of the determination of its meaning, at
least in principle, is not supported by conventional mathematical practice. It is
commonplace, however, to ask for an expression that signifies a semantic entity,
for instance the non-negative square root of 2 once its existence has been made
plausible. Thus, to the extent that conventional mathematical practice supports
a distinction between syntax and semantics, the latter serves as a tool whereas
the former takes priority. In the case of the inverse of zero, this convention
implies that by the mere use of an expression 1/0 it is already acknowledged
that, at least in principle, the author (speaker) knows what this expression may
mean and is able to provide an explanation of that meaning.

As a consequence of the limited separation of syntax and semantics the use
of axioms for the specification of operations is somehow limited too. However
attractive it may seem to be from a formal perspective the idea that inverse
or division is merely specified by one or more first order axioms is not very
appealing to most mathematicians. As a consequence of this bias against the
use of syntactic methods it is conceivable that less than optimal use has been
made of specification techniques and term rewriting techniques in the context
of arithmetic.

2.4 Motivation(s) for having inverse defined on zero

various approaches to the inverse of zero are motivated in different ways. Four
motives for investigating a specific approach can be distinguished at least:

Curiosity driven motivation. One may investigate a certain approach with-
out any claim that is is of either practical or philosophical value. For
instance:

• In [7] the option that 1/0 = 1 is investigated without any regard to
whether or not there is an advantage in adopting that option.

• Incorporating the idea of the Riemann sphere into arithmetic. (The
theory of wheels: [25, 14, 15], with subsequent work in [24].)

• Making progress on the first order theory of fields. (E.g. in [19, 22].)

• In [26] the idea is explored that 1/0 = (−1)!. The paper contains a
significant attempt to survey the history of division by zero, which,
however contradicts the claim of [13] that the history of division starts
with the ancient Greeks.

Instrumental motivation for specific objectives. A certain approach may
be considered useful for pursuing specific objectives which are at first sight
unrelated to division by zero. Among such objectives we mention:
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• Exploiting calculational correspondence with formal reasoning pat-
terns in geometry and analysis (E.g [20] upon adopting 1/0 = 0.)

• Simplification of semantics and proof theory. (1/0 = 0 as assumed in
various proof checking systems.)

• Making use of the framework of equational abstract datatype speci-
fications for the investigation of specific arithmetical datatypes. For
instance upon adopting 1/0 = 0, work towards a theory of fractions
is reported in [8]). For algebraic datatype specification we mention
e.g. [17].

Moderate preference for a specific design. The idea that a certain approach
to division by zero is preferable to all competing approaches, including the
conventional idea of having division by zero undefined, serves as a motiva-
tion for some work. The development of Transmathematics (see e.g [21])
incorporates an attempt to rework parts of mathematics in a preferred
design involving a notion of division by zero based on signed infinities.

Exposing a strong and definite preference. An author or group of authors
may be convinced that adopting a certain approach to division by zero will
be beneficial for the development of mathematics at large. This conviction
comes with the idea that the approach at hand provides a superior per-
spective in comparison to other approaches, including conventional math-
ematics.

For instance in [20] and work cited in that paper, the respective authors
express a strong preference for 1/0 = 0 = 0/0. Remarkably, authors from
the Institute of Reproducing Kernels claim that setting 0 = 0/0 = 1/0 is
a discovery which dates back to 2014 only ([18, 23]). This claim is to our
perception refuted by the existence of [22]. The latter paper claims no
priority for the idea that 1/0 = 0 while making much progress regarding
the logical analysis of that idea, to such an extent that its place in the
history of the subject seems to be undisputable.

Admittedly in [22] no strong preference for 1/0 = 0 is formulated. The
history of expressing a strong preference for calculating with 1/0 = 0
throughout mathematics may well have started in 2014 just as claimed
in [18, 23].

3 A survey of minimal premeadows of charac-
teristic zero

A datatype is minimal if it has no proper subalgebras. Below we will consider
minimal arithmetical datatypes only, thereby leaving the reals for later work.
We assume that the set Q of rational numbers is given and that 0, 1, addi-
tion, opposite, subtraction, and multiplication on Q are known. We refrain
from adopting any particular construction of the rational numbers, we merely
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assume that these are given as a set with known interpretations for each closed
expression 1/q where q denotes a nonzero integer. We will consider arithmetical
datatypes with a domain that includes Q and may extend it with at most three
pairwise different values outside Q taken from ⊥,+∞,−∞. All functions from
ΣMd except inverse extend the interpretations of these functions on Q while in-
verse and division are constrained by finding a proper inverse or quotient if one
exits in Q. With Q? we refer to the arithmetical datatype of rationals in which
inverse and division are partial functions. Q? is not a premeadow but it can be
easily turned into a premeadow Qp by taking for 0−1 any rational number p as
a value. Below we will discuss in some detail Q0 and Q1.

3.1 Totalising division with an absorptive element

The simplest idea for developing a premeadow which includes the rational num-
bers is to introduce ⊥ outside Q as a new value which serves as an absorptive
element. We use ⊥ which is the customary notation in the theory of abstract
datatypes for such an element where it is often referred to as an error element.
In transmathematics (see e.g. [2]) the notation Φ is preferred for an absorptive
element, and the negative connotation of an error is deliberately avoided.

This strategy may be applied to any partial algebra. The value ⊥ is supposed
to propagate through all functions and to serve as the inverse of 0: 0−1 = ⊥
and for all x, x+⊥ = ⊥+ x = −⊥ = x−⊥ = ⊥− x = x · ⊥ = ⊥ · x = ⊥−1 =
⊥/x = x/⊥ = ⊥.

The structure thus obtained is denoted with Q⊥. From the perspective
of abstract datatypes Q⊥ is a very plausible structure, but, we found almost
no literature about this particular structure. In [10], Q⊥ is referred to as the
common meadow of rational numbers, thereby emphasizing its proximity to a
common understanding of partiality of division, while writing, a for additional
element instead of ⊥ in order to avoid any distraction potentially caused by the
traditional negative connotations of ⊥. In [10] the the equational theory of Q⊥
is studied in considerable detail, resulting in a completeness theorem restricted
to the case of characteristic zero. In [9] the same structure appears as the initial
algebra of so-called fracpairs. In [21] the real number version of Q⊥ occurs as
example 19.

3.1.1 Semantic justification

If for a closed expression t Q⊥ |= t = 0 then this identity is entirely trustworthy
for any mathematician. The fact that inverse was made total can only make
calculations deviate in the direction of non-rational values, i.e in the direction
of ⊥.

One may criticise Q⊥ for being pessimistic about the information which may
be obtained from expressions involving division by zero.
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3.1.2 Practical justification

We have no information about the practical use which has been made of this par-
ticular totalised arithmetic. The equational theory of Q⊥ is somewhat cumber-
some and seems not to provide an attractive platform for the systematic devel-
opment of further equational specifications, either initial or loose, of datatypes
which incorporate functions and sorts tailored to specific applications. It is an
advantage of Q⊥ that the unconditional fraction addition rule (UFAR) holds:

x

y
+
u

v
=
x · v + y · u

y · v

3.2 Zero as the inverse of zero

Instead of taking a new value ⊥ as the outcome of 0−1 one may take an existing
value for instance 0−1 = 0, thus obtaining the arithmetical; datatype Q0. This
structure, and its first order and equational theory has been first studied in
significant detail in [19] and [22]. An equational initial algebra specification for
Q0 is given in [11]. For further work on the equational theory of Q0 and its
counterparts for real and complex numbers we refer to [4, 5, 6, 7].

Adopting 0−1 = 0 underlies [20] and many related papers. The same design
decision has been adopted in various theorem provers.

3.2.1 Semantic justification

From a point of view of symmetry setting 0−1 to 0 is a reasonable, and even
elegant way of completing the graph of the partial inverse function to a total one.
We see no principled justification for, say, the following equation 1

(1/0)−(1/0) = 0

in terms of the concept of division or with the help of analytic or asymptotic
methods. However, one may easily get used to 1/0 = 0 and the consequences
thereof and avoid negative consequences of this assumption. The fact that
a systematic axiomatic approach becomes feasible serves as a justification for
adopting a seemingly arbitrary value of inverse on 0.

In Q0 UFAR fails: 1 = 1/0 + 1/1 6= (1 · 1 + 0 · 1)/(0 · 1) = 1/0 = 0 and as
a consequence the theory of fractions for Q0 is more involved than the fraction
theory of Q⊥. Instead of UFAR the conditional fraction addition rule (CFAR)
is valid in Q0:

x 6= 0 ∧ y 6= 0→ x

y
+
u

v
=
x · v + y · u

y · v

3.2.2 Practical justification

Four lines of practical justification can currently be distinguished: (i) based on
the assumption that 0−1 = 0 a rich meta-theory can be developed, (ii) we found
that the equational theory of arithmetic with inverse is made total by adopting
0−1 = 0 is attractive and allows for extension in several useful directions, (iii)
by adopting 0−1 = 0 the logic of proof checkers may be simplified in a useful
manner, while preventing errors of calculation and proof is not made much
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harder, (iv) Some authors claim that adopting 0−1 = 0 works unexpectedly well
in various different branches of mathematics (see [20] and related papers).

3.3 One as the inverse of zero

Taking 0−1 = 1 the structure Q1 is obtained. This option has been investigated
in detail in [7]. We notice that Q1 satisfiers CFAR but not UFAR:

1 + 1 =
1

0
+

1

0
6= 1 · 0 + 0 · 1

0 · 0
=

0 + 0

0
=

0

0
= 0 · 1 = 0

3.3.1 Justification

A semantic justification of this arithmetical datatype is comparable to the jus-
tification given for Q0 though somewhat less convincing because there is less
symmetry, as inverse ceases to be an involution, and the equational theory be-
comes more involved and less attractive without any perceivable gains.

Apart from some spurious mentioning of the idea that 0−1 = 1 in the ed-
ucational literature we have not seen any systematic work on this basis. At
this stage we are unaware of any practical justification for this design. One
might just as well consider 0−1 = 731 giving Q731 and agree in advance that
no definition or theorem is made dependent of the parameter 731 which could
just as well have been replaced by 732, or any other arbitrary rational number.
Perhaps it is an advantage of working with 0−1 = 731 in Q731 that it is easy to
detect any unwanted dependency of a further result or development from the
ad hoc number 731.

3.4 Unsigned ∞ as the inverse of zero: uncommon wheels

A different idea is to let 0−1 take a new value q outside Q (just as ⊥) but in
such a manner that q−1 = 0. It is customary to denote q with ∞ in this case.
The simplest design of an arithmetical datatype of this kind, denoted with Q∞
is as follows:

Q∞ has domain Q ∪ {∞} and the operations are extended as follows (as-
suming that the resulting structure will be a premeadow):

• 0−1 =∞ and ∞−1 = 0,

• ∞ · x =∞+ x = −∞ =∞.

3.4.1 Semantic justification

A semantic justification for Q∪{∞} may be as follows: some closed expressions
which evaluate to ⊥ in Q⊥ are now evaluated to a meaningful value, for instance:

1/(1/0) = lim
x↓0

1/(1/x) = lim
x↑0

1/(1/x) = lim
x→0

x = 0

12



However a similar motivation can not in each case be given, for instance let

P (x, y) =
1

(1/x)− (1/y)

then Q∞ |= P (0, 0) = 0. Indeed limx↓0(limy↓0 P (x, y)) = 0 but consider the
following path through this two dimensional limit: limx↓0 P (x, x · (1 + x)) = 1.
It follows that the limit limx↓0,y↓0 P (x, y) is not well-defined. Next consider

Q(x, y) =
1

(1/x) · (1/(1/y))

We find Q∞ |= Q(0, 0) = 0 but limx↓0(limy↓0Q(x, y)) = ∞, whence the 2-
dimensional limit limx↓0,y↓0Q(x, y) does not exist. One may conclude that
justification of outcomes of evaluation in Q∞ on the basis of asymptotic con-
siderations is problematic. This observation motivates the design of wheels. In
addition we notice both UFAR and CFAR fail in Q∞:

0 = 0 + 0 =
1

∞
+

1

∞
6= 1 · ∞+∞ · 1

∞ ·∞
=
∞ ·∞
∞

=∞ · 1

∞
=∞ · 0 =∞

To the best of our knowledge Q∞ has not been investigated, or even pro-
posed, in the literature on division by zero. Nevertheless it is a very plausible
structure for which we suggest the following name: the uncommon wheel of
rationals. The idea is that, in line with [25], an arithmetical datatype with
a single non-finite value for the inverse of zero, i.e. a non-rational element e
so that e = 0−1, and e−1 = 0 is referred to as a wheel. Now the common
wheels (simply referred to as wheels), as discussed below, are equipped with an
absorbtive element ⊥ while the uncommon wheels are not.

3.5 The wheel of rationals: combining ∞ and ⊥
Q∞ can be adapted in such a manner that problematic outcomes are avoided by
incorporating ⊥. This construction leads to the wheel of rationals (here denoted
as Q∞,⊥), as first specified in [25].

• |Q∞,⊥| = Q ∪ {∞,⊥},

• 0−1 =∞,

• ∞−1 = 0,

• ∞ · 0 = ⊥,

• ∞+∞ = ⊥,

• ∞ ·∞ =∞,

• −∞ =∞,

• for x ∈ Q, x 6= 0: ∞ · x =∞,
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• for x ∈ Q: ∞+ x =∞,

• x +⊥ = ⊥+ x = −⊥ = x−⊥ = ⊥− x = x · ⊥ = ⊥ · x = ⊥−1 = ⊥/x =
x/⊥ = ⊥

These definitions suffice in combination with the requirement that Q∞,⊥ is a
premeadow which extends Q? and which extends the graphs of partial inverse
and division to total functions.

It is worth mentioning that various familiar equations are invalid in the wheel
of rationals, e.g. x ·0 = 0, an the so-called quasi-cardinality rule (x/y)+(z/y) =
(x+ z)/y (the name of this identity comes from [1]). We also note that UFAR
and CFAR both fail in Q∞,⊥:

∞ = 0 · 0 + 0 · 0 =
0

∞
+

0

∞
6= 0 · ∞+∞ · 0

∞ ·∞
=
⊥+⊥
∞

=
⊥
∞

= ⊥

another example indicates that an occurrence of the constant 0 plays no role in
this fact:

0 = 0 + 0 =
1

∞
+

1

∞
6= 1 · ∞+∞ · 1

∞ ·∞
=
∞+∞
∞

=
⊥
∞

= ⊥

3.5.1 Semantic justification

The wheel of rationals seems to be justified in the following sense: it produces
proper rational outcomes only in cases where limits are taken in arbitrary order
and from an arbitrary direction, but we have no proof this somewhat informal
intuition.

The metatheory of wheels is attractive and has been developed to a signifi-
cant extent in [14, 15]. However, we are unaware of the existence of applications
of wheels.

3.6 Transrationals: signed infinities combined with Φ

In some cases the wheel of rationals fails to provide a proper value (that is,
a value in Q) while it would be justified to do so. For instance the following
identity can be justified if one thinks of ∞ as a positive infinite value which
satisfies ∞+∞ =∞:

1

(1/0) + (1/0)
= 0

On the other hand there is less justification for having

1

(1/0) + ((−1)/0)
= 0

By distinguishing positive and negative infinity both cases can be separated. If
1/0 is positive infinity then (−1)/0 can be considered negative infinity, and while
∞+∞ =∞ is plausible there is no plausible value for∞+(−∞) except an error
value. These considerations constitute the recent introduction of transrationals.
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In the tradition of transrationals ⊥ is denoted Φ, and so we may have both
constants and require that ⊥ = Φ.

We will denote the arithmetical datatype of transrationals with Q±∞,Φ.
The domain includes on top of the known rationals three additional elements:
|Q±∞,Φ| = Q ∪ {∞,−∞,Φ}. We assume that the rational numbers are given
as (n,m) with n ∈ Z, m ∈ N, m > 0 and gcd(m,n) = 1. Thus 0 is represented
by (0, 1) and 1 is represented by (1, 1). S(n,m) = (n\ gcd(n,m),m\ gcd(n,m))
denotes simplification of the pair (n,m) with \ denoting integer division. The
operations of Q±∞,Φ are determined by the following 43 rewrite rules. In these
rules the pairs (n,m) are considered auxiliary constants.

• 0 = (0, 1), 1 = (1, 1),⊥ = Φ,

• Φ + x = Φ, x+ Φ = Φ, −Φ = Φ, Φ · x = Φ, x · Φ = Φ, Φ−1 = Φ,

• ∞ ·∞ =∞,∞ · −∞ = −∞,−∞ ·∞ = −∞,−∞ · −∞ =∞,

• ∞ · (0, 1) = Φ, (0, 1) · ∞ = Φ,−∞ · (0, 1) = Φ, (0, 1) · −∞ = Φ,

• n > 0→∞ · (n,m) =∞, n > 0→ (n,m) · ∞ =∞,

• n > 0→ −∞ · (n,m) = −∞, n > 0→ (n,m) · −∞ = −∞,

• n < 0→∞ · (n,m) = −∞, n > 0→ (n,m) · ∞ =∞,

• n < 0→ −∞ · (n,m) =∞, n > 0→ (n,m) · −∞ = −∞,

• ∞+ (−∞) = Φ, (−∞) +∞ = Φ,

• ∞+∞ =∞, (−∞) + (−∞) = −∞,

• ∞+ (n,m) =∞, (n,m) +∞ =∞,

• −∞+ (n,m) = −∞, (n,m) +−∞ = −∞,

• (0, 1)−1 =∞,

• ∞−1 = (0, 1), (−∞)−1 = (0, 1),

• −(n,m) = (−n,m),

• (n,m) + (k, l) = S(n · k +m · l,m · l),

• (n,m) · (k, l) = S(n · k,m · l),

• n > 0→ (n,m)−1 = (m,n), n < 0→ (n,m)−1 = (−m,−n),

• x− y = x+ (−y), x/y = x · y−1.

Here it is understood that say (n,m)·(k, l) = S(n·k,m·l) represents a single step
for each pair (n,m) with m 6= 0. It is easy to see that Q±∞,Φ is a premeadow.
The rewrite system is confluent and terminating.
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Proposition 3.1. For each closed expression t not involving Φ and ⊥: if
Q±∞,Φ |= t = Φ then Qinf,⊥ |= t = ⊥.

Proof. Straightforward with induction on the length of a reduction path to
normal form in the rewrite system for transrationals.

3.6.1 Semantic justification

Providing a semantic justification for Q±∞,Φ is not entirely straightforward. For
instance consider the expression Q(x, y) = (x−1 + (((−1)/y)−1)−1)−1. Evalua-
tion of Q(0, 0) in the premeadow of transrationals yields:

Q(0, 0) =
1

0−1 + (((−1)/0)−1)−1
=

1

∞+ ((−∞)−1)−1
=

1

∞+∞
=

1

∞
= 0

On the other hand limx↓0,y↓0R(x, y) = limx↓0,y↓0
1

x−1−y−1 and the latter limit
does not exist. It appears that for explaining the results of evaluation in the
arithmetical datatype of transrationals it is important one must have an inside
out evaluation strategy in mind. Moreover a preference for innermost evaluation
takes priority over considerations in terms of limits of related rational functions.
Innermost evaluation requires that an expression is only evaluated after each of
its subexpressions has been evaluated.

Each of the identities listed in the description can be given an explanation
in terms of limits and then by adopting the principle of innermost evaluation
one obtains a justification for each derivable identity between closed terms in
Q±∞,Φ.

3.7 Beyond transrationals? Incorporating a negative zero

Consider the fraction

P (x, y) =
1

( 1
x + −1

( 1
((−1)/y)

)
)

Evaluation of the closed fraction P (0, 0) in the premeadow of transrationals
yields:

P (0, 0) =
1

1
0 + −1

( 1
((−1)/0)

)

=
1

∞+ −1
( 1
−∞ )

=
1

∞+ −1
0

=
1

∞+ (−∞)
=

1

Φ
= Φ

Now limx↓0,y↓0 P (x, y) = limx↑0,y↑0 P (x, y) = 0 from which it may be inferred
that there is ample asymptotic justification for having P (0, 0) = 0, and that
a reasonable case can be made to look for a further refinement or adaptation
of transrational arithmetic in which P (0, 0) evaluates to 0 rather than to Φ.
We notice that Q0 |= P (0, 0) = 0 but one may claim with ample justification
that Q0 allows too many identities, so that contemplating Q0 does not provide a
useful solution to this question, and neither does working in Q∞,⊥ where P (0, 0)
evaluates to ⊥, because Q∞,⊥ fails to differentiate between the two expressions
discussed in the beginning of Paragraph 3.6.
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There is room for modification of the transrational arithmetic as defined
in [2] in order to take alternative requirements regarding the evaluation of closed
expressions into account.

Problem 3.1. Does there exist an arithmetical datatype which satisfies P (0, 0) =
0 and in which all or most expressions which evaluate in transrational arithmetic
to a finite non-error result evaluate to the same result, while still sufficiently
many expressions evaluate to an error (i.e. to Φ).

At first sight the introduction of a negative zero, as promoted for instance
in the IEEE-754 floating point standard, may easily lead to a solution to this
question, but the details involved are not straightforward. We refer to the filter
calculus of [3] as work which is relatively close to this topic.

3.8 Transrational arithmetic with a second zero

As an experiment we introduce the additional constant � which represents neg-
ative zero, or rather the inverse of negative infinity, and which we will call
“second zero”, in order to avoid suggesting the plausibility of certain equations,
such as for instance −� = 0 or (−�)−1 =∞. Because the axioms below imply
that � = (−(0−1)−1 this constant logically serves as an abbreviation. Its role
in term rewriting is different and more important as it may serve as a normal
form in circumstances where the expression (−(0−1)−1 of which it serves as an
abbreviation is not considered a normal form. The rewrite system is adapted
by including in addition the following 18 rewrite rules:

• ∞ ·� = Φ,� · ∞ = Φ,−∞ ·� = Φ,� · −∞ = Φ,

• ∞+ � =∞, � +∞ =∞,

• (−∞) + � = −∞, � + (−∞) = −∞,

• �−1 = −∞,

• ∞−1 = (0, 1), (−∞)−1 = �,

• −� = �,

• � + (n,m) = �, (n,m) + � = �,

• � + � = �,

• � ·� = �,

• � · (n,m) = �, (n,m) ·� = �,

Together these rules will be called TM�. The rewrite system is terminating
and confluent. The arithmetic datatype thus obtained, will be denoted with
Q±∞,�,Φ is a premeadow. Q±∞,�,Φ satisfies P (0, 0) = 0. However, in contrast
with transrational arithmetic Q±∞,�,Φ |= Q(0, 0) = Φ (with Q(x, y) as in Para-
graph 3.6.1). Compared with Q±∞,Φ, Q±∞,�,Φ is a less natural arithmetical
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datatype because of the asymmetry between ∞−1 and (−∞)−1. For instance
in Q±∞,�,Φ, 1 +∞−1 = 1 and 1 + (−∞)−1 = (−∞)−1, with the latter equation
having no asymptotic justification at all. Q±∞,�,Φ qualifies as a solution of
Problem 3.1 but it is probably too asymmetric to be useful.

Finding adaptations of transrational arithmetic in which there is a meaning-
ful role for a second zero, which may behave more like a negative zero than �,
is at the time of writing this survey an open topic for further research, which in
all likelihood allows for a plurality of different designs.

The arithmetical datatype Q±∞,�,Φ, which we will call transrationals (tran-
srational arithmetic) with a second zero is merely one option indicating such
possibilities, and no claim is made that Q±∞,�,Φ will constitute a prominent
outcome of such investigations.

4 Concluding remarks

The theme of division by zero is introduced and the conventional approach to
this matter is sketched. The central role of the appreciation of a contrast be-
tween syntax and semantics is emphasised and an attempt is made to formulate
in what sense elaborating on the theme of division by zero is reasonably possible.

Using the notion of a premeadow, which generalises the specailization to the
assiciative case of the notion of a transfield as proposed in [21], a brief survey is
given of options for defining arithmetical datatypes providing a total extension
of the division operator. The survey is restricted to characteristic zero and to
datatypes which extend the rational numbers by one or finitely more additional
elements.

Our survey of options is incomplete, first of all because the literature on
division by zero is already hard to grasp and quite diverse, but more importantly
because some possible avenues have yet been left unexplored, as is exemplified
by the role of signed zeroes, which feature in practice more than in theory. An
example is given of an arithmetical datatype which contains a negative zero.
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