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Abstract

Computation based on a total arithmetic eliminates the need to handle
arithmetical exceptions, which is one of the major obstacles to the ex-
ploitation of fine-grain, massive, multi-processor architectures. We have
been designing and investigating a family of fine-grained architectures
that exploit exception-free arithmetic to implement a statically assigned,
systolic, dataflow technique that we call “slipstreaming.” In this paper,
we report on the simulation of a slipstreamed implementation of the Fast
Fourier Transform (FFT), which is an important numerical algorithm in
engineering. We consider its properties and compilation challenges. The
compilation challenges additionally include using the output of the FFT
to dynamically compute a match against a fixed target. We find, empiri-
cally, that the latency is a good aproximation to linear in the number of
sample points transformed by the FFT.

1 Introduction

Almost everything that computers do involves arithmetic and may fail
on arithmetical exceptions, such as division by zero. Computers usually
have large and complicated exception handling circuitry to allow the pro-
grammer to specify how the computer should attempt to recover from
an exception. Such recovery usually involves long delays in fetching and
executing the exception handling code. Such delays can often be toler-
ated in serial computers but the position is more complicated in parallel
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computers. We need to consider two kinds of parallelism. Course-grain
parallelism executes large bocks of code in parallel. Within each block,
instructions are executed sequentially. This requires large, von Neumann
processors, that can execute arbitrary code. By contrast, fine-grain paral-
lelism executes small blocs in parallel. The blocks may contain just one or
a small number of sequential instructions. The smaller the block, the more
the parallelism. Fine-grain parallelism can use much smaller and faster,
non-von-Neumann processors. As the processors are smaller, a computer
chip can have more of them and this opens up the possibility that it can do
more computation per unit time. We take this to an extreme by executing
just one instruction, in each processor, in a very fine-grain architecture.

Computer scientists have explored many different kinds of parallelism.
The most parallel is a systolic array. These are arrays or lattices of pro-
cessing cores laid out on a computer chip. On every clock tick, all of the
cores read data from their immediate neighbours, process the data and
get the result ready to be read by their immediate neighbours on the next
clock tick. Data flows through the array systolically, that is, in a heart
beat, regulated by the computer’s clock. Systolic arrays have a number
of advantages and disadvantages. Our approach is to go as far as we can
to retain advantages and remove disadvantages.

Systolic arrays were proposed as an easy to manufacture way of getting
many processors on a chip; but they make some assumptions that are
impossible to deliver with current technology. A systolic array is a lattice
of processors, arranged such that every processor, on the edge of the
chip, has an input or output channel. It is impossible to fabricate a
large number of Input and Output (I/O) channels, on a chip, so it is
impossible to read and write data at the theoretical speeds required by
systolic arrays. The literature on systolic arrays usually neglects the issue
of I/O, which often leads to unrealistic expectations of processing speed.
In our architectures, we require only one input and output channel per
edge of the chip. This small number of channels can be manufactured. A
greater number of channels would improve performance, up to and beyond
that of a systolic array, but we accept the limitations of current fabrication
methods.

Systolic arrays allow arbitrarily complex functions to be placed in each
core. This can be achieved by using von Neumann cores to compute the
functions but this complicates timing on the chip. A von Neumann core
uses a clock to control its execution of a sequential program, executing at
most one instruction, from a program, per clock tick. It follows that a von
Neumann core takes many clock ticks to compute a complex function. The
chip must have a processor clock whose timing signals are passed to all
processors but the systolic requirement of passing data on each clock tick
means there must be a separate data clock that instructs each processor to
read data from its immediate neighbours. The data clock must be slowed
down to allow the slowest von Neumann processor to do its work but this
means that all von Neumann processors are slowed down to this slowest
speed. This gives poor performance and requires additional circuitry to
provide two clocks and the means for slowing one of them down.

We take a different approach. We use one or a small number of in-
structions, in each core, and use many cores to emulate complex functions.



This means that the array can operate at full speed all of the time. How-
ever, it requires that data, carried by tokens, passes systolically over the
many adjacent cores that are emulating the complex function. This is
done using a data pipeline that allows tokens to pass over an arbitrarily
complex, acyclic, path using just two bits in a token’s header. Further
more, we arrange that each processor core has two I/O ports per edge.
This supports efficient binary fan-out from a serial thread to many par-
allel threads and fan-in from many parallel threads to one serial thread.
Fan out is typically used to distribute work and fan-in to collect results.

Thus we arrive at a very fine-grain architecture that has an array of
many non-von-Neumann cores, arranged with simpler I/O, but more com-
plicated data paths, than systolic arrays. We conservatively estimate that
we will be able to manufacture of order ten thousand cores per chip, with
22 nm fabrication technologies, giving, at least, order one million cores
per board. We further estimate that the chips will execute at 1 GHz,
giving a theoretical maximum, of order, 1 PHz. As the cores execute two
FLoating-point OPerations per clock tick, both a multiplication and an
addition, this is a theoretical maximum of order 2 PFLOP per board.
This is a very high performance and is more cores than early computers
had memory locations. Indeed we think of our cores as smart memory
locations that perform computations on their data. Just as today’s com-
puter users tolerate low utilisation of memory, so we tolerate similarly low
utilisation of cores.

Computer scientists have explored many ways of compiling programs
for arrays of processors; many of these compilation strategies are very com-
plex. The second named author, of the present paper, specified the “slip-
stream” paradigm of language programming. In this paradigm, programs
are laid out in a two dimensional pipeline, respecting our limitation of
zero dimensional 1/0, where systolic arrays specify one dimensional 1/0.
He implemented the first slipstream programs by hand. These supplied
mathematical libraries that can be combined into mathematical programs
that inherit the property of executing in a pipeline. Such pipelines read
successive data, on each clock tick, and can execute many mathematical
functions or, indeed, many mathematical programs, per clock tick. He
implemented a molecular dynamics program with the property that many
hundreds of instantiations of the program can be executed in a simulation
of one of our boards. That is, it completes execution of many hundreds of
molecular dynamics programs per clock tick, thereby allowing many hun-
dreds of pairwise molecular interactions to be computed per clock tick.

The first-named author, of the present paper, generalised this approach
and developed compiler techniques to support slipstream programming.
He applied these techniques to the Fast Fourier Transform (FFT), which is
an important numerical algorithm in engineering. The Fourier transform
is unitary, in the complex domain, so it can be implemented, as a matrix
multiplication, in time order O(nS), where n is the number of complex
sample points that are transformed. This is too slow to be of practical
application in engineering. By contrast, the FFT operates in time order
O(nlogan). This is so fast that the FFT is, today, the basis of a very large
part of signal processing, in all manner of devices from mobile telephones
to radio telescopes. Empirical measurements on our slipstream implemen-



tation of the FFT show that it operates with a latency of order O(7n).
This means that the first signal in a slipstream takes order O(7n) clock
ticks to transform and is then followed by successive transformed signals
every clock tick. In further work, not reported here, we examined trade
offs in the number of clock ticks in which a signal is input and the latency
of processing. We found that the slower a signal is input, the shorter the
latency and the smaller the number of cores used to compute the FFT.

A further advantage of the slipstream implementation of the FFT is
that it can be followed by further processing, also in a slipstream. Here
we investigate adding a matched filter to the FFT stream. Similar com-
putations can be used to sharpen signals and to detect and track multiple
targets, for example ground vehicles or aircraft in a radar signal.

In the next sections, we give further information about our architec-
ture, the compilation strategies used and the performance of the slip-
stream FFT. We then discuss wider implications of our architecture and
slipstream programming paradigm and conclude with a statement of the
original contributions of the paper.

2 Architecture

Our target architecture for this case-study is a single chip that contains
a dense, rectangular array of cores, each capable of a fused multiply-add,
connected orthogonally by short pipelined queues. This is illustrated in
Figure 1.

Link: queue length configurable 1-8

>>> As above =
2|z 3E Ak
O | w
vl Core el rle Core vle
2|& K 2|e <|&
Port S0 Port S0
Port S1 Port S1

Figure 1: Target Architecture

The cores are not programmable in the conventional sense of being
able to load and step through a sequence of instructions but are merely
configurable: on a clock tick they accept fixed-size input tokens (or pack-
ets) on their input ports and generate fixed-size output tokens that are
loaded onto their output ports. Depending on the configuration in the
core and the routing bits set within the token, tokens may be routed
onto an adjacent core without further processing and may additionally be
routed into the arithmetic unit. Every core maintains a very small set of



registers that can be treated as additional inputs and can be targeted as
additional outputs.

It should be noted that this design is a simplified version of our
production-level design. This enabled the design team to decouple the
current investigation from the ongoing production design. However, our
simplified core has the all the features required for the problem at hand
and presents near-identical challenges for compilation. Figure 2 shows a

block-diagram for the simplified core.
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Figure 2: Simplified Core



There is one area in which the simplified core significantly differs from
the production design, which is that it lacks support for the initial con-
figuration phase. Configuration is effected by flooding the chip with a
compiled stream of tokens that are tagged as configuration tokens. The
configuration bit has the effect of diverting the token from the Arithmeti-
cal Logic Unit (ALU) into the configuration registers of the core. The task
of converting a target configuration into a stream has been previously in-
vestigated; the straightforward implementation had a stream whose size
and generation time were linear in the number of configuration registers
to be set.

It should be apparent that, relative to a standard Central Processing
Unit (CPU), these cores are radically stripped-down. The benefit is that
they can be packed far more densely than would normally be possible. Our
conservative estimate is that a single chip will support more than 10,000
cores, using standard 22 nm fabrication technology. The disadvantage is
that the cores are so simplified that they cannot operate independently,
which limits them to data-flow problems.

The central idea behind slip-streaming is to allow ‘waves’ of computa-
tion to sweep through the machine, each one following immediately behind
the other. One can think of each wave as a state vector, propagating from
one set of processors to the next, although the size and meaning of the
vector typically changes at each step. It is vital to appreciate that slip-
streaming is systolic, in so far as all processors activate on every clock tick,
even if all inputs are blank tokens representing no-operation (NOOP). Pro-
cessors do not store their inputs because they may be obliterated on the
next clock tick by the next wave of state data.

In this style of computation, values that need to be processed together,
by a multiply-add (or other instruction), must arrive at a processor on the
same clock tick. It is the responsibility of the compiler to adjust travel
time and path geometry so that data arrives simultaneously.

3 Problem

We implemented a slipstreamed FFT, followed by a complex, match-filter
and calculate the energy of the match. We describe the FFT separately
as it is entirely modular and is the most complex part of the design.

3.1 FFT

The Fast Fourier Transform, given below as F', is a discrete version of the
Fourier transform and is completely described as the product of a square
matrix, M, and a vector, Z, of size, n, in the complex domain:

Where w is the n’th root of unity: w = exp 2wi/n.



3.2 Match-Filter

The match-filter is defined as follows. Let F' be the complex vector that
is the FFT of the input vector, as shown, above, in Equation 1. Let T be
the complex vector that is the target vector. Then the match vector, V,
is obtained by multiplying corresponding complex elements (z,iy) of the
vectors F' and T to give the Hadamard product Vi, = F},T). The energy
of the match is ), |xkiyk|2, where Vi, = (zk, iyk)-

In our implementation we were interested in the challenges presented
by all three parts of this computation. However, if only the energy of the
match is needed and not the values of the match vector then we need not
permute I’ in the output stage of the FFT. This saves a very significant
amount, one third, of the latency of the FFT.

3.3 General Approach to Compilation

At the time of writing, we have implemented a variety of compiler com-
ponents that we typically orchestrate using custom code for particular
challenges, reflecting our historical focus on providing optimised low-level
mathematical functions rather than the provision of a general purpose
compiler. This has been a fruitful approach that has given us the oppor-
tunity to understand the nature of optimising for this novel architecture
and the variants which we have studied. However, all the components
fit within an overall general approach, which we describe here using the
example of compiling an arithmetical expression.

The compilation strategy for arithmetical expressions is to transform
them into a net representation, which is done by transforming into static,
single-assignment form and then into a variant of Three-Address Code
(TAC). For example, the single assignment

r=az’+br+c
transforms into TAC as

t0 = a * x

tl = t0 * x
t2 = b * x

t3 = t1 + t2
r =t3 +c

which is equivalent to the net shown in Figure 3.

In order to enforce simultaneous arrival, which is the systolic con-
straint, the compiler segments the net by required arrival time. In Figure
4, the segments are shown to the left of the red lines.

The compiler inserts explicit no-ops, representing pass-through, which
specifies the appropriate state-vector for each time-step. See Figure 5.
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From this stage, a layout process takes over, mapping each state vec-
tors into a layer (line) of cores, reordered where appropriate to reduce the
lateral movement of data. Additional layers are added, as necessary, to
implement the ‘plumbing’ between layers. It is not sufficient to simply
plot the most direct route because of the systolic constraint that tokens
from the same wave cannot use the same path twice. We execute an effi-
cient heuristic to obtain a layout and fallback to a Turing complete, but
inefficient, algorithm if the heuristic fails.

3.4 Special FFT

For important algorithms such as the FFT, which is dominated by the cost
of data transfers, the general technique does not generate a sufficiently
good solution. Consequently we turned to a more specialised approach
that respects the general approach but produces more compact code.

The FFT has a recursive implementation. This is compactly expressed
in Python3 (below) and this implementation is useful to gain an insight
into how the static dataflow is laid out.

import cmath
from cmath import pi
from functools import lru_cache

def recfft( x ):
’?’Recursive fast fourier transform.’’’
# len( x ) is n, the size of the input vector.
if len( x ) <= 1:
return x
else:
( even, odd ) = separate( x )
y = recfft( even )
z = recfft( odd )
lhs = [ y[i] + twiddle( i, len(x) ) * z[i]
for i in range( 0, len(y) ) ]
rhs = [ y[i] - twiddle( i, len(x) ) * z[i]
for i in range( 0, len(y) ) ]
return lhs + rhs

# Memoise the factors.
# 2j is literal for twice the square root of -1.
@lru_cache()
def twiddle( a, b ):
return cmath.exp( -2j * pi * a / b )

def separate(x):
1230
Given a list x of length 2%*N, unzips it into two sublists
of the alternating members. The first list is all the
even-numbered members and the second list is all
the odd numbered members. If the list-length is not



a power of 2 we’ll eventually get an index error,
protecting us from silent failure.
200
return(
[ x[i] for i in range( 0, len(x), 2 ) 1,
[ x[i] for i in range( 1, len(x), 2 ) 1]
)

The crucial inductive step is the separation of the even and odd num-
bered elements of the input vector, which are each transformed recursively,
followed by combining their values together. This gives rise to the insight
that this inductive step can be decomposed into a series of n-permutations
and map operations. The block diagram in Figure 6 illustrates this.

‘ Deinterlace |

‘ FFTIN/2] ‘ ‘ FFTIN/2] ‘

\ Zip |

‘ Combine ‘

‘ Unzip |

Figure 6: Recursive Decomposition of FFT

This exposed a particular weakness in our compiler toolkit. From the
viewpoint of our architecture, the FFT is largely a problem of reordering
state vectors using permutations. Because of the systolic constraint, per-
mutations turn into a thick layer of plumbing - areas which are dedicated
to routing data from one position to another. Such plumbing is undesir-
able because it performs no useful computation, making use of only the
network portion of the cores that are involved, and reducing the utilisation
and available computational power of the chip.

As a consequence, when two areas of ‘plumbing’ abut each other it is
essential to be able to fuse the two together. We therefore implemented
an optimisation for finding successive permutations and merging them to
produce a single permutation. The block diagram in Figure 7 unrolls
a level of recursion to show how successive permutations arise and the
opportunities for their fusion.

3.5 Special Match-Filter and Energy Sum

The match-filter is simply the Hadamard product with a fixed complex
vector, followed by mapping the absolute-square function over the vector
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Figure 7: Fused Permutation

and finally taking the sum. All three steps had pre-existing library func-
tions for real-valued vectors, so the work involved was generalising them
to complex numbers.

Dealing with complex numbers raised two specific technical problems.
The first problem is that complex vectors can exploit the fact that in
each direction a core has two inputs and two outputs, that is to say pre-
cisely corresponding to real and imaginary components, or as alternating
real/imaginary components with only one per core. We call these packed
and unpacked representations and we needed to deal with both of these.
Because of the need to have spare channels, the unpacked representation
is typically more useful, which is, perhaps, unexpected.

The second problem is more fundamental, which is that the complex
arithmetic implementation uses the Cartesian representation where the
real and imaginary components are separated. This is not consistent
with the current mathematical models of transcomplex arithmetic, which
preserve angular information when adding or multiplying numbers with
an infinite or nullity modulus [3] [1] [2]. Implementing this accurately
would undoubtedly add a very considerable overhead to the implemen-
tation whilst the practical benefit would be very small. This remains an
outstanding issue.

The solution was implemented by a custom library component whose
argument is the number of complex data points, n. This generates code to
compute FFT(n), the Fast Fourier Transform of size n. This component
orchestrates lower-level compiler components to generate the configura-
tion for a rectangular area of the chip that implements the FFT, followed
by the match-filter, followed by the energy sum.

The custom solution was verified in simulation against two different
implementations of the FFT at different sizes for a series of input vectors
provided at sequential clock ticks.

Figure 8 shows a generated solution for FFT(16). The squares corre-
spond to cores and the lines show how cells are connected from one to an-
other; disconnected lines show optional inputs that are unused. Cores that
are unshaded are used purely for routing whereas cores that are shaded
are used for their arithmetic capability as well - the ratio of shaded to
the total number of cells is the effective utilisation - and highlights the
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significance of the plumbing overhead.

The flow of the solution is from left to right. The blank left hand
columns (4 columns) show the initial permutation. Implementations of
the FFT, embedded in radar and other signal-processing systems, often as-
sume that data is presented pre-permutated. Hence these columns would
be removed from such an implementation. The FFT itself occupies the
21 columns on the left. The right hand edge shows the tree-like reduc-
tion of the match-vector into an energy sum (3 columns) and to their
right the two shaded-layers (7 columns) is the Hadamard product with
the match-vector in unpacked format.

Figure 8: FFT(16)

Figure 9 shows just the FFT portion of the solution, annotated by
hand to indicate the breakdown of the various layers. The thick borders
indicates the recursive decomposition, where the upper and lower halves
are the even/odd halves.

3.6 Results

The results are shown in Table 1. Programs are compiled for FFT(N)
with N running from 2 to 256, inclusive, in steps of powers of 2. The
corresponding number of real Inputs is 2N. The investigation focuses on
the variable, FFT, part of the challenge, neglecting the Hadamard prod-
uct, which is of fixed with, and the width of the tree sum, which is given,
analytically, by log,(2/N) — 1. The Width and Height of the array of cores
is given for computing just the FFT. Note that the height is fixed at 2N
by design. The travel time (TT) of a single wave (latency) is also given.
Note that for slipstreamed solutions the latency represents the time for a

12
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single input vector to be processed but the throughput for a slipstreamed
solution is one vector per clock-tick.

The Width of the solution depends heavily on the quality of the solu-
tions found for the permutations. Inspection of Figure 10 shows that the
Width is a good approximation to linear as 0.8N and inspection of Figure
11 shows that the travel time (TT) is a good approximation to linear, as
6.7N. The Width is visualised in Figure 12.

N | Inputs | Width | Height Cells TT
2 4 5 4 20 12

4 8 12 8 96 30

8 16 20 16 320 59
16 32 31 32 992 115
32 64 48 64 3,072 221
64 128 79 128 | 10,112 437
128 256 133 256 | 34,048 860
256 512 237 512 | 121,344 | 1,717

Table 1: Results For FFT(N) Only

Width

300

Figure 10: FFT Width

4 Conclusion

We demonstrate a fully pipelined Fast Fourier Transform, in the complex
domain. We examine relatively small input vectors of size N complex

14



Width

Figure 11: FFT Latency

terms, corresponding to 2N real terms and find that a simulated chip
would process input vectors at the fastest possible rate (that is one vector
per clock tick) with a latency slightly less than 7N clock ticks.

Larger input vectors require solutions that cross chip boundaries. This
presents issues that have not been addressed here, such as reduced data-
rates and longer delays. Commercial solutions typically use only real-
valued input vectors, which leads to a substantial simplification in conven-
tional processors. We expect the same to also apply to our architecture.

A substantial part of the area consumed by the solution is due to the
necessity to implement non-interfering pipeline queues (‘plumbing’) to
move vector data from one row to another. If the input data is presented
at a lower rate then it is possible to very substantially reduce the width of
the solution by employing fixed delays in the connecting pipelines. We did
subsequently investigate this and, for example, the width of the FFT(256)
was reduced from 237 to just 41 in the extreme case of inputing each signal
at a speed of one datum per clock tick.
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